Internal
problem
ID
[23780]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
4.
The
Laplace
transform.
Exercise
at
page
199
Problem
number
:
35
Date
solved
:
Thursday, October 02, 2025 at 09:45:06 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+7*diff(y(t),t)+6*y(t) = 250*exp(t)*cos(t); ic:=[y(0) = 2, D(y)(0) = -7]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+7*D[y[t],t]+6*y[t]==250*Exp[t]*Cos[t]; ic={y[0]==2,Derivative[1][y][0] ==-7}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(6*y(t) - 250*exp(t)*cos(t) + 7*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): -7} dsolve(ode,func=y(t),ics=ics)