87.24.13 problem 13

Internal problem ID [23795]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 5. Series solutions of second order linear equations. Exercise at page 218
Problem number : 13
Date solved : Thursday, October 02, 2025 at 09:45:16 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 x y^{\prime }+p y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 53
Order:=6; 
ode:=diff(diff(y(x),x),x)-2*x*diff(y(x),x)+p*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {p \,x^{2}}{2}+\frac {p \left (p -4\right ) x^{4}}{24}\right ) y \left (0\right )+\left (x -\frac {\left (p -2\right ) x^{3}}{6}+\frac {\left (p -2\right ) \left (-6+p \right ) x^{5}}{120}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 80
ode=D[y[x],{x,2}]-2*x*D[y[x],x]+p*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {p^2 x^5}{120}-\frac {p x^5}{15}-\frac {p x^3}{6}+\frac {x^5}{10}+\frac {x^3}{3}+x\right )+c_1 \left (\frac {p^2 x^4}{24}-\frac {p x^4}{6}-\frac {p x^2}{2}+1\right ) \]
Sympy. Time used: 0.274 (sec). Leaf size: 48
from sympy import * 
x = symbols("x") 
p = symbols("p") 
y = Function("y") 
ode = Eq(p*y(x) - 2*x*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {p^{2} x^{4}}{24} - \frac {p x^{4}}{6} - \frac {p x^{2}}{2} + 1\right ) + C_{1} x \left (- \frac {p x^{2}}{6} + \frac {x^{2}}{3} + 1\right ) + O\left (x^{6}\right ) \]