87.24.17 problem 17

Internal problem ID [23799]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 5. Series solutions of second order linear equations. Exercise at page 218
Problem number : 17
Date solved : Thursday, October 02, 2025 at 09:45:19 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+(1-x)*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 78
ode=x^2*D[y[x],{x,2}]+(1-x)*D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 e^{\frac {1}{x}} \left (\frac {40885 x^5}{6}+\frac {5525 x^4}{6}+\frac {425 x^3}{3}+25 x^2+5 x+1\right ) x^3+c_1 \left (-\frac {5 x^5}{3}+\frac {5 x^4}{6}-\frac {2 x^3}{3}+x^2-2 x+1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + (1 - x)*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : ODE x**2*Derivative(y(x), (x, 2)) + (1 - x)*Derivative(y(x), x) + 2*y(x) does not match