Internal
problem
ID
[23845]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
5.
Series
solutions
of
second
order
linear
equations.
Exercise
at
page
253
Problem
number
:
11
Date
solved
:
Thursday, October 02, 2025 at 09:45:46 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=6; ode:=x*diff(diff(y(x),x),x)-diff(y(x),x)+4*x^3*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x*D[y[x],{x,2}]-D[y[x],x]+4*x^3*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**3*y(x) + x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)