Internal
problem
ID
[23858]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
5.
Series
solutions
of
second
order
linear
equations.
Exercise
at
page
253
Problem
number
:
33
Date
solved
:
Thursday, October 02, 2025 at 09:45:56 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=2*(x+3)^2*diff(diff(y(x),x),x)-(x^2+5*x+6)*diff(y(x),x)-y(x) = 0; dsolve(ode,y(x),type='series',x=-3);
ode=2*(x+3)^2*D[y[x],{x,2}]-(x^2+5*x+6)*D[y[x],x]-y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-3,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*(x + 3)**2*Derivative(y(x), (x, 2)) - (x**2 + 5*x + 6)*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=-3,n=6)