Internal
problem
ID
[23866]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
5.
Series
solutions
of
second
order
linear
equations.
Exercise
at
page
253
Problem
number
:
43
Date
solved
:
Thursday, October 02, 2025 at 09:46:01 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
Order:=6; ode:=x*(1-x)*diff(diff(y(x),x),x)+(3/4-4*x)*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x*(1-x)*D[y[x],{x,2}]+(3/4-4*x)*D[y[x],x]-2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(1 - x)*Derivative(y(x), (x, 2)) + (3/4 - 4*x)*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)