Internal
problem
ID
[23870]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
6.
Boundary
value
problems.
Exercise
at
page
262
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:46:04 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+9*y(x) = 0; ic:=[y(0) = 1, y(Pi) = B]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+9*y[x]==0; ic={y[0]==1,y[Pi]==B}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
{}
from sympy import * x = symbols("x") B = symbols("B") y = Function("y") ode = Eq(9*y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, y(pi): B} dsolve(ode,func=y(x),ics=ics)
ValueError : Couldnt solve for initial conditions