87.30.14 problem 14

Internal problem ID [23913]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 8. Nonlinear differential equations and systems. Exercise at page 310
Problem number : 14
Date solved : Thursday, October 02, 2025 at 09:46:29 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=3 x \left (t \right )-2 y \left (t \right )+\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{2}\\ \frac {d}{d t}y \left (t \right )&=4 x \left (t \right )-y \left (t \right )+\left (x \left (t \right )^{2}-y \left (t \right )^{2}\right )^{5} \end{align*}
Maple
ode:=[diff(x(t),t) = 3*x(t)-2*y(t)+(x(t)^2+y(t)^2)^2, diff(y(t),t) = 4*x(t)-y(t)+(x(t)^2-y(t)^2)^5]; 
dsolve(ode);
 
\[ \text {No solution found} \]
Mathematica
ode={D[x[t],t]==3*x[t]-2*y[t]+(x[t]^2+y[t]^2)^2,D[y[t],t]==4*x[t]-y[t]+(x[t]^2-y[t]^2)^5}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-(x(t)**2 + y(t)**2)**2 - 3*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-(x(t)**2 - y(t)**2)**5 - 4*x(t) + y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
NotImplementedError :