Internal
problem
ID
[23913]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
8.
Nonlinear
differential
equations
and
systems.
Exercise
at
page
310
Problem
number
:
14
Date
solved
:
Thursday, October 02, 2025 at 09:46:29 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 3*x(t)-2*y(t)+(x(t)^2+y(t)^2)^2, diff(y(t),t) = 4*x(t)-y(t)+(x(t)^2-y(t)^2)^5]; dsolve(ode);
ode={D[x[t],t]==3*x[t]-2*y[t]+(x[t]^2+y[t]^2)^2,D[y[t],t]==4*x[t]-y[t]+(x[t]^2-y[t]^2)^5}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-(x(t)**2 + y(t)**2)**2 - 3*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-(x(t)**2 - y(t)**2)**5 - 4*x(t) + y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
NotImplementedError :