87.30.16 problem 16

Internal problem ID [23915]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 8. Nonlinear differential equations and systems. Exercise at page 310
Problem number : 16
Date solved : Sunday, October 12, 2025 at 05:55:17 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )-x \left (t \right ) y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-y \left (t \right )+x \left (t \right ) y \left (t \right ) \end{align*}
Maple. Time used: 0.348 (sec). Leaf size: 72
ode:=[diff(x(t),t) = x(t)-x(t)*y(t), diff(y(t),t) = -y(t)+x(t)*y(t)]; 
dsolve(ode);
 
\begin{align*} [\{x \left (t \right ) = 0\}, \{y \left (t \right ) &= c_1 \,{\mathrm e}^{-t}\}] \\ \left [\left \{x \left (t \right ) &= \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{{\mathrm e}^{-\operatorname {LambertW}\left (\frac {{\mathrm e}^{c_1} {\mathrm e}^{\textit {\_a}} {\mathrm e}^{-1}}{\textit {\_a}}\right )+c_1 +\textit {\_a} -1}+\textit {\_a}}d \textit {\_a} +t +c_2 \right )\right \}, \left \{y \left (t \right ) = \frac {-\frac {d}{d t}x \left (t \right )+x \left (t \right )}{x \left (t \right )}\right \}\right ] \\ \end{align*}
Mathematica. Time used: 0.087 (sec). Leaf size: 131
ode={D[x[t],t]==x[t]-x[t]*y[t],D[y[t],t]==y[t]+x[t]*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -W\left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1] \left (W\left (-e^{K[1]-c_1} K[1]\right )+1\right )}dK[1]\&\right ][t+c_2] \left (-\exp \left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1] \left (W\left (-e^{K[1]-c_1} K[1]\right )+1\right )}dK[1]\&\right ][t+c_2]-c_1\right )\right )\right )\\ x(t)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1] \left (W\left (-e^{K[1]-c_1} K[1]\right )+1\right )}dK[1]\&\right ][t+c_2] \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(x(t)*y(t) - x(t) + Derivative(x(t), t),0),Eq(-x(t)*y(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)