87.31.27 problem 34

Internal problem ID [23943]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 8. Nonlinear differential equations and systems. Exercise at page 321
Problem number : 34
Date solved : Thursday, October 02, 2025 at 09:46:41 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-3 x \left (t \right )+2 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-2 x \left (t \right )+2 y \left (t \right ) \end{align*}
Maple. Time used: 0.045 (sec). Leaf size: 31
ode:=[diff(x(t),t) = -3*x(t)+2*y(t), diff(y(t),t) = -2*x(t)+2*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{t}+c_2 \,{\mathrm e}^{-2 t} \\ y \left (t \right ) &= 2 c_1 \,{\mathrm e}^{t}+\frac {c_2 \,{\mathrm e}^{-2 t}}{2} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 73
ode={D[x[t],t]==-3*x[t]+2*y[t],D[y[t],t]==-2*x[t]+2*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{3} e^{-2 t} \left (2 c_2 \left (e^{3 t}-1\right )-c_1 \left (e^{3 t}-4\right )\right )\\ y(t)&\to \frac {1}{3} e^{-2 t} \left (c_2 \left (4 e^{3 t}-1\right )-2 c_1 \left (e^{3 t}-1\right )\right ) \end{align*}
Sympy. Time used: 0.050 (sec). Leaf size: 31
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(3*x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(2*x(t) - 2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = 2 C_{1} e^{- 2 t} + \frac {C_{2} e^{t}}{2}, \ y{\left (t \right )} = C_{1} e^{- 2 t} + C_{2} e^{t}\right ] \]