88.1.1 problem 15

Internal problem ID [23944]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 1. Introduction. Exercise at page 6
Problem number : 15
Date solved : Thursday, October 02, 2025 at 09:46:42 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\frac {1}{t^{2}} \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 11
ode:=diff(y(t),t) = 1/t^2; 
dsolve(ode,y(t), singsol=all);
 
\[ y = -\frac {1}{t}+c_1 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 13
ode=D[y[t],t]==1/t^2; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\frac {1}{t}+c_1 \end{align*}
Sympy. Time used: 0.116 (sec). Leaf size: 7
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(Derivative(y(t), t) - 1/t**2,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} - \frac {1}{t} \]