Internal
problem
ID
[24010]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
44
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:54:01 PM
CAS
classification
:
[_rational, _Bernoulli]
ode:=y(x)^3+2*x*y(x)^3+1+3*x*y(x)^2*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( y[x]^3+2*x*y[x]^3+1 )+( 3*x*y[x]^2 )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x)**3 + 3*x*y(x)**2*Derivative(y(x), x) + y(x)**3 + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)