88.12.1 problem 1

Internal problem ID [24057]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Miscellaneous Exercises at page 55
Problem number : 1
Date solved : Thursday, October 02, 2025 at 09:55:20 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=x^{2} y \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x) = x^2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{\frac {x^{3}}{3}} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 22
ode=D[y[x],x]==x^2*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{\frac {x^3}{3}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.155 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x^{3}}{3}} \]