Internal
problem
ID
[24060]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Miscellaneous
Exercises
at
page
55
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 09:56:30 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=x-y(x)+1+(2*y(x)-2*x+3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x-y[x]+1)+(2*y[x]-2*x+3)*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x + (-2*x + 2*y(x) + 3)*Derivative(y(x), x) - y(x) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)