Internal
problem
ID
[24066]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Miscellaneous
Exercises
at
page
55
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 09:56:51 PM
CAS
classification
:
[[_homogeneous, `class C`], [_Abel, `2nd type`, `class C`], _dAlembert]
With initial conditions
ode:=1+(y(x)+1-3*x)*diff(y(x),x) = 0; ic:=[y(4) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(1) + (y[x]+1-3*x)*D[y[x],{x,1}]==0; ic={y[4]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-3*x + y(x) + 1)*Derivative(y(x), x) + 1,0) ics = {y(4): 0} dsolve(ode,func=y(x),ics=ics)