Internal
problem
ID
[24069]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Miscellaneous
Exercises
at
page
55
Problem
number
:
15
Date
solved
:
Thursday, October 02, 2025 at 09:56:53 PM
CAS
classification
:
[_exact, _rational]
With initial conditions
ode:=(x+x/(x^2+y(x)^2))*diff(y(x),x)+y(x)-y(x)/(x^2+y(x)^2) = 0; ic:=[y(1) = 3^(1/2)]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x+x/(x^2+y[x]^2))*D[y[x],x]+(y[x]-y[x]/(x^2+y[x]^2))==0; ic={y[1]==Sqrt[3]}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + x/(x**2 + y(x)**2))*Derivative(y(x), x) + y(x) - y(x)/(x**2 + y(x)**2),0) ics = {y(1): sqrt(3)} dsolve(ode,func=y(x),ics=ics)
Timed Out