Internal
problem
ID
[24074]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Miscellaneous
Exercises
at
page
55
Problem
number
:
20
Date
solved
:
Thursday, October 02, 2025 at 09:57:04 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x^2*y(x)+2*y(x)^3-(2*x^3+3*x*y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2*y[x]+2*y[x]^3)-(2*x^3+3*x*y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*y(x) - (2*x**3 + 3*x*y(x)**2)*Derivative(y(x), x) + 2*y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out