88.12.22 problem 24

Internal problem ID [24078]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Miscellaneous Exercises at page 55
Problem number : 24
Date solved : Thursday, October 02, 2025 at 09:57:28 PM
CAS classification : system_of_ODEs

\begin{align*} y^{\prime }&=z \left (x \right )\\ z^{\prime }\left (x \right )&=w \left (x \right )\\ w^{\prime }\left (x \right )&=y \end{align*}
Maple. Time used: 0.067 (sec). Leaf size: 175
ode:=[diff(y(x),x) = z(x), diff(z(x),x) = w(x), diff(w(x),x) = y(x)]; 
dsolve(ode);
 
\begin{align*} w \left (x \right ) &= c_1 \,{\mathrm e}^{x}+c_2 \,{\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+c_3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \\ y \left (x \right ) &= c_1 \,{\mathrm e}^{x}-\frac {c_2 \,{\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )}{2}+\frac {c_2 \,{\mathrm e}^{-\frac {x}{2}} \sqrt {3}\, \cos \left (\frac {\sqrt {3}\, x}{2}\right )}{2}-\frac {c_3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )}{2}-\frac {c_3 \,{\mathrm e}^{-\frac {x}{2}} \sqrt {3}\, \sin \left (\frac {\sqrt {3}\, x}{2}\right )}{2} \\ z \left (x \right ) &= c_1 \,{\mathrm e}^{x}-\frac {c_2 \,{\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )}{2}-\frac {c_2 \,{\mathrm e}^{-\frac {x}{2}} \sqrt {3}\, \cos \left (\frac {\sqrt {3}\, x}{2}\right )}{2}-\frac {c_3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )}{2}+\frac {c_3 \,{\mathrm e}^{-\frac {x}{2}} \sqrt {3}\, \sin \left (\frac {\sqrt {3}\, x}{2}\right )}{2} \\ \end{align*}
Mathematica. Time used: 0.021 (sec). Leaf size: 234
ode={D[y[x],x]==z[x],D[z[x],x]==w[x],D[w[x],x]==y[x]}; 
ic={}; 
DSolve[{ode,ic},{y[x],z[x],w[x]},x,IncludeSingularSolutions->True]
 
\begin{align*} w(x)&\to \frac {1}{3} e^{-x/2} \left ((c_1+c_2+c_3) e^{3 x/2}+(2 c_1-c_2-c_3) \cos \left (\frac {\sqrt {3} x}{2}\right )+\sqrt {3} (c_2-c_3) \sin \left (\frac {\sqrt {3} x}{2}\right )\right )\\ y(x)&\to \frac {1}{3} e^{-x/2} \left ((c_1+c_2+c_3) e^{3 x/2}-(c_1-2 c_2+c_3) \cos \left (\frac {\sqrt {3} x}{2}\right )-\sqrt {3} (c_1-c_3) \sin \left (\frac {\sqrt {3} x}{2}\right )\right )\\ z(x)&\to \frac {1}{3} e^{-x/2} \left ((c_1+c_2+c_3) e^{3 x/2}-(c_1+c_2-2 c_3) \cos \left (\frac {\sqrt {3} x}{2}\right )+\sqrt {3} (c_1-c_2) \sin \left (\frac {\sqrt {3} x}{2}\right )\right ) \end{align*}
Sympy. Time used: 0.165 (sec). Leaf size: 163
from sympy import * 
x = symbols("x") 
y = Function("y") 
z = Function("z") 
w = Function("w") 
ode=[Eq(-z(x) + Derivative(y(x), x),0),Eq(-w(x) + Derivative(z(x), x),0),Eq(-y(x) + Derivative(w(x), x),0)] 
ics = {} 
dsolve(ode,func=[y(x),z(x),w(x)],ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{3} e^{x} - \left (\frac {C_{1}}{2} + \frac {\sqrt {3} C_{2}}{2}\right ) e^{- \frac {x}{2}} \cos {\left (\frac {\sqrt {3} x}{2} \right )} - \left (\frac {\sqrt {3} C_{1}}{2} - \frac {C_{2}}{2}\right ) e^{- \frac {x}{2}} \sin {\left (\frac {\sqrt {3} x}{2} \right )}, \ z{\left (x \right )} = C_{3} e^{x} - \left (\frac {C_{1}}{2} - \frac {\sqrt {3} C_{2}}{2}\right ) e^{- \frac {x}{2}} \cos {\left (\frac {\sqrt {3} x}{2} \right )} + \left (\frac {\sqrt {3} C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{- \frac {x}{2}} \sin {\left (\frac {\sqrt {3} x}{2} \right )}, \ w{\left (x \right )} = C_{1} e^{- \frac {x}{2}} \cos {\left (\frac {\sqrt {3} x}{2} \right )} - C_{2} e^{- \frac {x}{2}} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{3} e^{x}\right ] \]