88.12.27 problem 30

Internal problem ID [24083]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Miscellaneous Exercises at page 55
Problem number : 30
Date solved : Thursday, October 02, 2025 at 09:58:58 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1}{x}+c_2 \,x^{2} \]
Mathematica. Time used: 0.006 (sec). Leaf size: 18
ode=x^2*D[y[x],{x,2}]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 x^3+c_1}{x} \end{align*}
Sympy. Time used: 0.025 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x^{2} \]