Internal
problem
ID
[24144]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
5.
Special
Techniques
for
Linear
Equations.
Exercises
at
page
146
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 10:00:11 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(diff(diff(diff(diff(y(x),x),x),x),x),x),x),x),x)+y(x) = x^15; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,8}]+y[x]==x^15; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**15 + y(x) + Derivative(y(x), (x, 8)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : Cannot find 8 solutions to the homogeneous equation necessary to apply undeter