Internal
problem
ID
[24148]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
5.
Special
Techniques
for
Linear
Equations.
Exercises
at
page
146
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 10:00:13 PM
CAS
classification
:
[[_high_order, _missing_y]]
ode:=diff(diff(diff(diff(diff(diff(diff(diff(y(x),x),x),x),x),x),x),x),x)+8*diff(diff(diff(diff(diff(diff(diff(y(x),x),x),x),x),x),x),x)+28*diff(diff(diff(diff(diff(diff(y(x),x),x),x),x),x),x)+56*diff(diff(diff(diff(diff(y(x),x),x),x),x),x)+70*diff(diff(diff(diff(y(x),x),x),x),x)+56*diff(diff(diff(y(x),x),x),x)+28*diff(diff(y(x),x),x)+8*diff(y(x),x) = exp(-x)*x^9; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,8}]+8*D[y[x],{x,7}]+28*D[y[x],{x,6}]+56*D[y[x],{x,5}]+70*D[y[x],{x,4}]+56*D[y[x],{x,3}]+28*D[y[x],{x,2}]+8*D[y[x],x]==Exp[-x]*x^9; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**9*exp(-x) + 8*Derivative(y(x), x) + 28*Derivative(y(x), (x, 2)) + 56*Derivative(y(x), (x, 3)) + 70*Derivative(y(x), (x, 4)) + 56*Derivative(y(x), (x, 5)) + 28*Derivative(y(x), (x, 6)) + 8*Derivative(y(x), (x, 7)) + Derivative(y(x), (x, 8)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(x**9 - (28*Derivative(y(x), (x, 2)) + 56*Derivative(y(x), (x,