Internal
problem
ID
[24154]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
5.
Special
Techniques
for
Linear
Equations.
Exercises
at
page
149
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 10:00:15 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=x^2*diff(diff(y(x),x),x)+x^2*diff(y(x),x)-x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x^2*D[y[x],{x,1}]-x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) - x*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False