Internal
problem
ID
[24159]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
5.
Special
Techniques
for
Linear
Equations.
Exercises
at
page
149
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 10:00:19 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+p(x)*diff(y(x),x)+q(x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+p[x]*D[y[x],{x,1}]+q[x]*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") p = Function("p") q = Function("q") ode = Eq(p(x)*Derivative(y(x), x) + q(x)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational: x > _n + 1