Internal
problem
ID
[24220]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
7.
Series
Methods.
Exercises
at
page
212
Problem
number
:
13
Date
solved
:
Thursday, October 02, 2025 at 10:00:56 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)+x^2*diff(y(x),x)+2*x*y(x) = x^3-x+3; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]+x^2*D[y[x],{x,1}]+2*x*y[x]==3-x+x^3; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + x**2*Derivative(y(x), x) + 2*x*y(x) + x + Derivative(y(x), (x, 2)) - 3,0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE -x**3 + x**2*Derivative(y(x), x) + 2*x*y(x) + x + Derivative(y(x), (x, 2)) - 3 does