Internal
problem
ID
[24228]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
7.
Series
Methods.
Exercises
at
page
220
Problem
number
:
8
Date
solved
:
Thursday, October 02, 2025 at 10:01:02 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=4*x^2*diff(diff(y(x),x),x)+8*x*diff(y(x),x)+(2*x-3)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=4*x^2*D[y[x],{x,2}]+(8*x)*D[y[x],{x,1}]+(2*x-3)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 8*x*Derivative(y(x), x) + (2*x - 3)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)