Internal
problem
ID
[24281]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
27
Problem
number
:
16
Date
solved
:
Thursday, October 02, 2025 at 10:06:51 PM
CAS
classification
:
[[_homogeneous, `class A`]]
ode:=x-y(x)*ln(y(x))+y(x)*ln(x)+x*(ln(y(x))-ln(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x-y[x]*Log[y[x]]+y[x]*Log[x] )+x*(Log[y[x]]-Log[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(-log(x) + log(y(x)))*Derivative(y(x), x) + x + y(x)*log(x) - y(x)*log(y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)