89.3.2 problem 2

Internal problem ID [24300]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 2. Equations of the first order and first degree. Exercises at page 34
Problem number : 2
Date solved : Thursday, October 02, 2025 at 10:12:39 PM
CAS classification : [_exact, _rational]

\begin{align*} 6 x +y^{2}+y \left (2 x -3 y\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 425
ode:=6*x+y(x)^2+y(x)*(2*x-3*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (324 x^{2}+108 c_1 +8 x^{3}+12 \sqrt {36 x^{5}+12 c_1 \,x^{3}+729 x^{4}+486 c_1 \,x^{2}+81 c_1^{2}}\right )^{{1}/{3}}}{6}+\frac {2 x^{2}}{3 \left (324 x^{2}+108 c_1 +8 x^{3}+12 \sqrt {36 x^{5}+12 c_1 \,x^{3}+729 x^{4}+486 c_1 \,x^{2}+81 c_1^{2}}\right )^{{1}/{3}}}+\frac {x}{3} \\ y &= \frac {\left (-i \sqrt {3}-1\right ) \left (324 x^{2}+108 c_1 +8 x^{3}+12 \sqrt {36}\, \sqrt {\left (x^{3}+\frac {81}{4} x^{2}+\frac {27}{4} c_1 \right ) \left (x^{2}+\frac {c_1}{3}\right )}\right )^{{1}/{3}}}{12}+\frac {x \left (i x \sqrt {3}-x +\left (324 x^{2}+108 c_1 +8 x^{3}+12 \sqrt {36}\, \sqrt {\left (x^{3}+\frac {81}{4} x^{2}+\frac {27}{4} c_1 \right ) \left (x^{2}+\frac {c_1}{3}\right )}\right )^{{1}/{3}}\right )}{3 \left (324 x^{2}+108 c_1 +8 x^{3}+12 \sqrt {36}\, \sqrt {\left (x^{3}+\frac {81}{4} x^{2}+\frac {27}{4} c_1 \right ) \left (x^{2}+\frac {c_1}{3}\right )}\right )^{{1}/{3}}} \\ y &= \frac {\left (324 x^{2}+108 c_1 +8 x^{3}+12 \sqrt {36}\, \sqrt {\left (x^{3}+\frac {81}{4} x^{2}+\frac {27}{4} c_1 \right ) \left (x^{2}+\frac {c_1}{3}\right )}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{12}-\frac {\left (i x \sqrt {3}+x -\left (324 x^{2}+108 c_1 +8 x^{3}+12 \sqrt {36}\, \sqrt {\left (x^{3}+\frac {81}{4} x^{2}+\frac {27}{4} c_1 \right ) \left (x^{2}+\frac {c_1}{3}\right )}\right )^{{1}/{3}}\right ) x}{3 \left (324 x^{2}+108 c_1 +8 x^{3}+12 \sqrt {36}\, \sqrt {\left (x^{3}+\frac {81}{4} x^{2}+\frac {27}{4} c_1 \right ) \left (x^{2}+\frac {c_1}{3}\right )}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 13.307 (sec). Leaf size: 406
ode=(6*x+y[x]^2)+y[x]*( 2*x-3*y[x] )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{6} \left (-\frac {2 \sqrt [3]{2} x^2}{\sqrt [3]{-2 x^3-81 x^2+\sqrt {-4 x^6+\left (2 x^3+81 x^2-27 c_1\right ){}^2}+27 c_1}}-2^{2/3} \sqrt [3]{-2 x^3-81 x^2+\sqrt {-4 x^6+\left (2 x^3+81 x^2-27 c_1\right ){}^2}+27 c_1}+2 x\right )\\ y(x)&\to \frac {1}{12} \left (\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) x^2}{\sqrt [3]{-2 x^3-81 x^2+\sqrt {-4 x^6+\left (2 x^3+81 x^2-27 c_1\right ){}^2}+27 c_1}}+2^{2/3} \left (1-i \sqrt {3}\right ) \sqrt [3]{-2 x^3-81 x^2+\sqrt {-4 x^6+\left (2 x^3+81 x^2-27 c_1\right ){}^2}+27 c_1}+4 x\right )\\ y(x)&\to \frac {1}{12} \left (\frac {2 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) x^2}{\sqrt [3]{-2 x^3-81 x^2+\sqrt {-4 x^6+\left (2 x^3+81 x^2-27 c_1\right ){}^2}+27 c_1}}+2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{-2 x^3-81 x^2+\sqrt {-4 x^6+\left (2 x^3+81 x^2-27 c_1\right ){}^2}+27 c_1}+4 x\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*x + (2*x - 3*y(x))*y(x)*Derivative(y(x), x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out