89.3.6 problem 6

Internal problem ID [24304]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 2. Equations of the first order and first degree. Exercises at page 34
Problem number : 6
Date solved : Thursday, October 02, 2025 at 10:12:46 PM
CAS classification : [_exact, _rational]

\begin{align*} v \left (2 u v^{2}-3\right )+\left (3 u^{2} v^{2}-3 u +4 v\right ) v^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 630
ode:=v(u)*(2*u*v(u)^2-3)+(3*u^2*v(u)^2-3*u+4*v(u))*diff(v(u),u) = 0; 
dsolve(ode,v(u), singsol=all);
 
\begin{align*} v &= \frac {-2+\frac {\left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{1}/{3}}}{2}+\frac {18 u^{3}+8}{\left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{1}/{3}}}}{3 u^{2}} \\ v &= \frac {36 i \sqrt {3}\, u^{3}-i \left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{2}/{3}} \sqrt {3}-36 u^{3}+16 i \sqrt {3}-\left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{2}/{3}}-8 \left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{1}/{3}}-16}{12 u^{2} \left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{1}/{3}}} \\ v &= -\frac {36 i \sqrt {3}\, u^{3}-i \left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{2}/{3}} \sqrt {3}+36 u^{3}+16 i \sqrt {3}+\left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{2}/{3}}+8 \left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{1}/{3}}+16}{12 u^{2} \left (-108 c_1 \,u^{4}+12 \sqrt {3}\, \sqrt {27 c_1^{2} u^{4}-108 u^{5}+108 c_1 \,u^{3}-36 u^{2}+32 c_1}\, u^{2}-216 u^{3}-64\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 35.058 (sec). Leaf size: 474
ode=v[u]*(2*u*v[u]^2-3)+( 3*u^2*v[u]^2-3*u+4*v[u])*D[v[u],u]==0; 
ic={}; 
DSolve[{ode,ic},v[u],u,IncludeSingularSolutions->True]
 
\begin{align*} v(u)&\to -\frac {2}{3 u^2}-\frac {\sqrt [3]{2} \left (-9 u^3-4\right )}{3 u^2 \sqrt [3]{27 c_1 u^4-54 u^3+\sqrt {-4 \left (9 u^3+4\right )^3+\left (-27 c_1 u^4+54 u^3+16\right ){}^2}-16}}+\frac {\sqrt [3]{27 c_1 u^4-54 u^3+\sqrt {-4 \left (9 u^3+4\right )^3+\left (-27 c_1 u^4+54 u^3+16\right ){}^2}-16}}{3 \sqrt [3]{2} u^2}\\ v(u)&\to -\frac {2}{3 u^2}+\frac {\left (1+i \sqrt {3}\right ) \left (-9 u^3-4\right )}{3\ 2^{2/3} u^2 \sqrt [3]{27 c_1 u^4-54 u^3+\sqrt {-4 \left (9 u^3+4\right )^3+\left (-27 c_1 u^4+54 u^3+16\right ){}^2}-16}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 c_1 u^4-54 u^3+\sqrt {-4 \left (9 u^3+4\right )^3+\left (-27 c_1 u^4+54 u^3+16\right ){}^2}-16}}{6 \sqrt [3]{2} u^2}\\ v(u)&\to -\frac {2}{3 u^2}+\frac {\left (1-i \sqrt {3}\right ) \left (-9 u^3-4\right )}{3\ 2^{2/3} u^2 \sqrt [3]{27 c_1 u^4-54 u^3+\sqrt {-4 \left (9 u^3+4\right )^3+\left (-27 c_1 u^4+54 u^3+16\right ){}^2}-16}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 c_1 u^4-54 u^3+\sqrt {-4 \left (9 u^3+4\right )^3+\left (-27 c_1 u^4+54 u^3+16\right ){}^2}-16}}{6 \sqrt [3]{2} u^2} \end{align*}
Sympy
from sympy import * 
u = symbols("u") 
v = Function("v") 
ode = Eq((2*u*v(u)**2 - 3)*v(u) + (3*u**2*v(u)**2 - 3*u + 4*v(u))*Derivative(v(u), u),0) 
ics = {} 
dsolve(ode,func=v(u),ics=ics)
 
Timed Out