Internal
problem
ID
[24307]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
34
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 10:12:55 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _exact, _rational, _Bernoulli]
ode:=1+y(x)^2+x*y(x)^2+(x^2*y(x)+y(x)+2*x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 1+y[x]^2+x*y[x]^2 )+( x^2*y[x]+y[x]+2*x*y[x] )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)**2 + (x**2*y(x) + 2*x*y(x) + y(x))*Derivative(y(x), x) + y(x)**2 + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)