89.4.2 problem 2

Internal problem ID [24324]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 2. Equations of the first order and first degree. Exercises at page 39
Problem number : 2
Date solved : Thursday, October 02, 2025 at 10:18:05 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} y \left (y^{3}-x \right )+x \left (y^{3}+x \right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.025 (sec). Leaf size: 342
ode:=y(x)*(y(x)^3-x)+x*(y(x)^3+x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (6 x^{2} \sqrt {81 x^{4}+3 c_1^{3}}+54 x^{4}+c_1^{3}\right )^{{1}/{3}}+\frac {c_1^{2}}{\left (6 x^{2} \sqrt {81 x^{4}+3 c_1^{3}}+54 x^{4}+c_1^{3}\right )^{{1}/{3}}}+c_1}{6 x} \\ y &= \frac {i \sqrt {3}\, c_1^{2}-i \left (6 x^{2} \sqrt {81 x^{4}+3 c_1^{3}}+54 x^{4}+c_1^{3}\right )^{{2}/{3}} \sqrt {3}-c_1^{2}+2 c_1 \left (6 x^{2} \sqrt {81 x^{4}+3 c_1^{3}}+54 x^{4}+c_1^{3}\right )^{{1}/{3}}-\left (6 x^{2} \sqrt {81 x^{4}+3 c_1^{3}}+54 x^{4}+c_1^{3}\right )^{{2}/{3}}}{12 x \left (6 x^{2} \sqrt {81 x^{4}+3 c_1^{3}}+54 x^{4}+c_1^{3}\right )^{{1}/{3}}} \\ y &= \frac {\left (6 x^{2} \sqrt {81 x^{4}+3 c_1^{3}}+54 x^{4}+c_1^{3}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )-\frac {c_1 \left (i c_1 \sqrt {3}+c_1 -2 \left (6 x^{2} \sqrt {81 x^{4}+3 c_1^{3}}+54 x^{4}+c_1^{3}\right )^{{1}/{3}}\right )}{\left (6 x^{2} \sqrt {81 x^{4}+3 c_1^{3}}+54 x^{4}+c_1^{3}\right )^{{1}/{3}}}}{12 x} \\ \end{align*}
Mathematica. Time used: 16.569 (sec). Leaf size: 357
ode=y[x]*( y[x]^3-x)+x*(y[x]^3+x)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\frac {2\ 2^{2/3} c_1{}^2}{\sqrt [3]{27 x^4+3 \sqrt {81 x^8+24 c_1{}^3 x^4}+4 c_1{}^3}}+\sqrt [3]{54 x^4+6 \sqrt {81 x^8+24 c_1{}^3 x^4}+8 c_1{}^3}+2 c_1}{6 x}\\ y(x)&\to \frac {-\frac {2 i 2^{2/3} \left (\sqrt {3}-i\right ) c_1{}^2}{\sqrt [3]{27 x^4+3 \sqrt {81 x^8+24 c_1{}^3 x^4}+4 c_1{}^3}}+i \left (\sqrt {3}+i\right ) \sqrt [3]{54 x^4+6 \sqrt {81 x^8+24 c_1{}^3 x^4}+8 c_1{}^3}+4 c_1}{12 x}\\ y(x)&\to \frac {\frac {2 i 2^{2/3} \left (\sqrt {3}+i\right ) c_1{}^2}{\sqrt [3]{27 x^4+3 \sqrt {81 x^8+24 c_1{}^3 x^4}+4 c_1{}^3}}-\left (1+i \sqrt {3}\right ) \sqrt [3]{54 x^4+6 \sqrt {81 x^8+24 c_1{}^3 x^4}+8 c_1{}^3}+4 c_1}{12 x}\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x + y(x)**3)*Derivative(y(x), x) + (-x + y(x)**3)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out