Internal
problem
ID
[24342]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
39
Problem
number
:
21
Date
solved
:
Thursday, October 02, 2025 at 10:20:37 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=y(x)*(y(x)+x^2)+x*(x^2-2*y(x))*diff(y(x),x) = 0; ic:=[y(1) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=y[x]*( x^2+y[x] )+x*( x^2-2*y[x] )*D[y[x],x]==0; ic={y[1]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2 - 2*y(x))*Derivative(y(x), x) + (x**2 + y(x))*y(x),0) ics = {y(1): 2} dsolve(ode,func=y(x),ics=ics)