89.4.22 problem 23

Internal problem ID [24344]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 2. Equations of the first order and first degree. Exercises at page 39
Problem number : 23
Date solved : Thursday, October 02, 2025 at 10:20:44 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} y \left (2-3 y x \right )-x y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=y(x)*(2-3*x*y(x))-x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}}{x^{3}+c_1} \]
Mathematica. Time used: 0.089 (sec). Leaf size: 22
ode=y[x]*( 2-3*x*y[x]  )-x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^2}{x^3+c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.116 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + (-3*x*y(x) + 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{C_{1} + x^{3}} \]