Internal
problem
ID
[24399]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Miscellaneous
Exercises
at
page
45
Problem
number
:
16
Date
solved
:
Thursday, October 02, 2025 at 10:24:45 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
With initial conditions
ode:=y(x)*(x^2+y(x)^2)+x*(3*x^2-5*y(x)^2)*diff(y(x),x) = 0; ic:=[y(2) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=y[x]*( x^2+y[x]^2 )+ x*(3*x^2-5*y[x]^2 )*D[y[x],x]==0; ic={y[2]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(3*x**2 - 5*y(x)**2)*Derivative(y(x), x) + (x**2 + y(x)**2)*y(x),0) ics = {y(2): 1} dsolve(ode,func=y(x),ics=ics)