Internal
problem
ID
[24420]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Miscellaneous
Exercises
at
page
45
Problem
number
:
38
Date
solved
:
Thursday, October 02, 2025 at 10:26:55 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
With initial conditions
ode:=y(x)^2+(x*y(x)+y(x)^2-1)*diff(y(x),x) = 0; ic:=[y(-1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=( y[x]^2 ) + ( x*y[x]+y[x]^2-1 )*D[y[x],x]==0; ic={y[-1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x*y(x) + y(x)**2 - 1)*Derivative(y(x), x) + y(x)**2,0) ics = {y(-1): 1} dsolve(ode,func=y(x),ics=ics)