Internal
problem
ID
[24429]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Miscellaneous
Exercises
at
page
45
Problem
number
:
47
Date
solved
:
Thursday, October 02, 2025 at 10:29:20 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
With initial conditions
ode:=y(x)^2+y(x)-(y(x)^2+2*x*y(x)+x)*diff(y(x),x) = 0; ic:=[y(3) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(y[x]^2+y[x])-(y[x]^2+2*x*y[x]+x)*D[y[x],x]== 0; ic={y[3]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y**2 - (2*x*y(x) + x + y(x)**2)*Derivative(y(x), x) + y(x),0) ics = {y(3): 1} dsolve(ode,func=y(x),ics=ics)