89.10.2 problem 2

Internal problem ID [24495]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 4. Additional topics on equations of first order and first degree. Exercises at page 77
Problem number : 2
Date solved : Thursday, October 02, 2025 at 10:42:44 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} y^{3}+y+1+x \left (x -3 y^{2}-1\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 286
ode:=y(x)^3+y(x)+1+x*(x-3*y(x)^2-1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (-108+108 c_1 x +12 \sqrt {93-12 x^{3}+\left (81 c_1^{2}+36\right ) x^{2}+\left (-162 c_1 -36\right ) x}\right )^{{2}/{3}}+12 x -12}{6 \left (-108+108 c_1 x +12 \sqrt {93-12 x^{3}+\left (81 c_1^{2}+36\right ) x^{2}+\left (-162 c_1 -36\right ) x}\right )^{{1}/{3}}} \\ y &= \frac {\left (-i \sqrt {3}-1\right ) \left (-108+108 c_1 x +12 \sqrt {93-12 x^{3}+\left (81 c_1^{2}+36\right ) x^{2}+\left (-162 c_1 -36\right ) x}\right )^{{1}/{3}}}{12}+\frac {\left (i \sqrt {3}-1\right ) \left (x -1\right )}{\left (-108+108 c_1 x +12 \sqrt {93-12 x^{3}+\left (81 c_1^{2}+36\right ) x^{2}+\left (-162 c_1 -36\right ) x}\right )^{{1}/{3}}} \\ y &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (-108+108 c_1 x +12 \sqrt {93-12 x^{3}+\left (81 c_1^{2}+36\right ) x^{2}+\left (-162 c_1 -36\right ) x}\right )^{{2}/{3}}}{12}+\left (-i \sqrt {3}-1\right ) \left (x -1\right )}{\left (-108+108 c_1 x +12 \sqrt {93-12 x^{3}+\left (81 c_1^{2}+36\right ) x^{2}+\left (-162 c_1 -36\right ) x}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 51.768 (sec). Leaf size: 381
ode=( y[x]^3+y[x]+1 )+x*( x-3*y[x]^2-1  )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt [3]{2} (3-3 x)}{3 \sqrt [3]{27 c_1 x+\sqrt {4 (3-3 x)^3+(27+27 c_1 x){}^2}+27}}-\frac {\sqrt [3]{27 c_1 x+\sqrt {4 (3-3 x)^3+(27+27 c_1 x){}^2}+27}}{3 \sqrt [3]{2}}\\ y(x)&\to \frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 c_1 x+\sqrt {4 (3-3 x)^3+(27+27 c_1 x){}^2}+27}}{6 \sqrt [3]{2}}-\frac {\left (1+i \sqrt {3}\right ) (3-3 x)}{3\ 2^{2/3} \sqrt [3]{27 c_1 x+\sqrt {4 (3-3 x)^3+(27+27 c_1 x){}^2}+27}}\\ y(x)&\to \frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 c_1 x+\sqrt {4 (3-3 x)^3+(27+27 c_1 x){}^2}+27}}{6 \sqrt [3]{2}}-\frac {\left (1-i \sqrt {3}\right ) (3-3 x)}{3\ 2^{2/3} \sqrt [3]{27 c_1 x+\sqrt {4 (3-3 x)^3+(27+27 c_1 x){}^2}+27}}\\ y(x)&\to \text {Root}\left [\text {$\#$1}^3+\text {$\#$1}+1\&,1\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^3+\text {$\#$1}+1\&,2\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^3+\text {$\#$1}+1\&,3\right ] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x - 3*y(x)**2 - 1)*Derivative(y(x), x) + y(x)**3 + y(x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out