89.10.8 problem 8

Internal problem ID [24501]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 4. Additional topics on equations of first order and first degree. Exercises at page 77
Problem number : 8
Date solved : Thursday, October 02, 2025 at 10:43:18 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} x^{3} y+\left (3 x^{4}-y^{3}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.148 (sec). Leaf size: 37
ode:=x^3*y(x)+(3*x^4-y(x)^3)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \ln \left (x \right )-c_1 +\frac {\ln \left (\frac {-15 x^{4}+4 y^{3}}{x^{4}}\right )}{20}+\frac {3 \ln \left (\frac {y}{x^{{4}/{3}}}\right )}{5} = 0 \]
Mathematica. Time used: 97.2 (sec). Leaf size: 531
ode=( x^3*y[x])+( 3*x^4-y[x]^3 )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,1\right ]}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,1\right ]}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,1\right ]}\\ y(x)&\to \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,2\right ]}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,2\right ]}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,2\right ]}\\ y(x)&\to \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,3\right ]}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,3\right ]}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,3\right ]}\\ y(x)&\to \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,4\right ]}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,4\right ]}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,4\right ]}\\ y(x)&\to \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,5\right ]}\\ y(x)&\to -\sqrt [3]{-1} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,5\right ]}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{\text {Root}\left [4 \text {$\#$1}^5-15 \text {$\#$1}^4 x^4+60 c_1\&,5\right ]} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*y(x) + (3*x**4 - y(x)**3)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE x**3*y(x)/(3*x**4 - y(x)**3) + Derivative(y(x), x) cannot be sol