Internal
problem
ID
[24513]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
4.
Additional
topics
on
equations
of
first
order
and
first
degree.
Exercises
at
page
77
Problem
number
:
20
Date
solved
:
Thursday, October 02, 2025 at 10:44:15 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]
With initial conditions
ode:=4*y(x)+3*(2*x-1)*(diff(y(x),x)+y(x)^4) = 0; ic:=[y(1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=( 4*y[x] )+ 3*( 2*x-1 )*(D[y[x],x]+y[x]^4)==0; ic={y[1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((6*x - 3)*(y(x)**4 + Derivative(y(x), x)) + 4*y(x),0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)