Internal
problem
ID
[24523]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
4.
Additional
topics
on
equations
of
first
order
and
first
degree.
Exercises
at
page
77
Problem
number
:
31
Date
solved
:
Thursday, October 02, 2025 at 10:45:25 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
With initial conditions
ode:=x^4-4*x^2*y(x)^2-y(x)^4+4*x^3*y(x)*diff(y(x),x) = 0; ic:=[y(1) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=( x^4-4*x^2*y[x]^2 -y[x]^4 )+( 4*x^3*y[x] )*D[y[x],x]==0; ic={y[1]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4 + 4*x**3*y(x)*Derivative(y(x), x) - 4*x**2*y(x)**2 - y(x)**4,0) ics = {y(1): 2} dsolve(ode,func=y(x),ics=ics)