89.11.5 problem 5

Internal problem ID [24530]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 8. Linear Differential Equations with constant coefficients. Exercises at page 117
Problem number : 5
Date solved : Thursday, October 02, 2025 at 10:45:56 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-15 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x)-15*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{3 x}+c_3 \,{\mathrm e}^{-5 x} \]
Mathematica. Time used: 0.02 (sec). Leaf size: 30
ode=D[y[x],{x,3}] +2* D[y[x],{x,2}] -15*D[y[x],x] ==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{5} c_1 e^{-5 x}+\frac {1}{3} c_2 e^{3 x}+c_3 \end{align*}
Sympy. Time used: 0.092 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-15*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- 5 x} + C_{3} e^{3 x} \]