Internal
problem
ID
[24552]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
8.
Linear
Differential
Equations
with
constant
coefficients.
Exercises
at
page
117
Problem
number
:
27
Date
solved
:
Thursday, October 02, 2025 at 10:46:04 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-6*y(x) = 0; ic:=[y(0) = 3, D(y)(0) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}] -D[y[x],x] -6*y[x]==0; ic={y[0]==3,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-6*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics)