89.12.10 problem 10

Internal problem ID [24564]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 8. Linear Differential Equations with constant coefficients. Exercises at page 121
Problem number : 10
Date solved : Thursday, October 02, 2025 at 10:46:08 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+6 y^{\prime \prime }+12 y^{\prime }+8 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=diff(diff(diff(y(x),x),x),x)+6*diff(diff(y(x),x),x)+12*diff(y(x),x)+8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2 x} \left (c_3 \,x^{2}+c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 23
ode=D[y[x],{x,3}]+6*D[y[x],{x,2}] +12*D[y[x],{x,1}] + 8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} (x (c_3 x+c_2)+c_1) \end{align*}
Sympy. Time used: 0.098 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(8*y(x) + 12*Derivative(y(x), x) + 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + C_{3} x\right )\right ) e^{- 2 x} \]