Internal
problem
ID
[24583]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
8.
Linear
Differential
Equations
with
constant
coefficients.
Exercises
at
page
121
Problem
number
:
29
Date
solved
:
Thursday, October 02, 2025 at 10:46:14 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)+5*diff(diff(y(x),x),x)+3*diff(y(x),x)-9*y(x) = 0; ic:=[y(0) = -1, y(1) = 0, y(infinity) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,3}]+5*D[y[x],{x,2}]+3*D[y[x],{x,1}]-9*y[x] ==0; ic={y[0]==-1,y[1]==0,y[Infinity]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-9*y(x) + 3*Derivative(y(x), x) + 5*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): -1, y(1): 0, y(oo): 0} dsolve(ode,func=y(x),ics=ics)