Internal
problem
ID
[24593]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
8.
Linear
Differential
Equations
with
constant
coefficients.
Exercises
at
page
127
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 10:46:22 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x) = 0; ic:=[y(0) = y__0, D(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x] ==0; ic={y[0]==y0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y0 = symbols("y0") y = Function("y") ode = Eq(y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): y0, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)