89.14.27 problem 27

Internal problem ID [24631]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 8. Linear Differential Equations with constant coefficients. Exercises at page 128
Problem number : 27
Date solved : Thursday, October 02, 2025 at 10:46:36 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime \prime \prime }+20 y^{\prime \prime \prime }+35 y^{\prime \prime }+25 y^{\prime }+6 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 27
ode:=4*diff(diff(diff(diff(y(x),x),x),x),x)+20*diff(diff(diff(y(x),x),x),x)+35*diff(diff(y(x),x),x)+25*diff(y(x),x)+6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_4 \,{\mathrm e}^{\frac {3 x}{2}}+c_3 \,{\mathrm e}^{x}+c_1 \,{\mathrm e}^{\frac {x}{2}}+c_2 \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 40
ode=4*D[y[x],{x,4}]+20*D[y[x],{x,3}]+35*D[y[x],{x,2}]+25*D[y[x],{x,1}]+6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} \left (c_1 e^{x/2}+c_2 e^{3 x/2}+c_4 e^x+c_3\right ) \end{align*}
Sympy. Time used: 0.129 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*y(x) + 25*Derivative(y(x), x) + 35*Derivative(y(x), (x, 2)) + 20*Derivative(y(x), (x, 3)) + 4*Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{- \frac {3 x}{2}} + C_{3} e^{- x} + C_{4} e^{- \frac {x}{2}} \]