89.18.4 problem 4

Internal problem ID [24704]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 9. Nonhomogeneous Equations: Undetermined coefficients. Oral Exercises at page 146
Problem number : 4
Date solved : Thursday, October 02, 2025 at 10:47:17 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\cos \left (2 x \right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)+y(x) = cos(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 -\frac {\cos \left (2 x \right )}{3} \]
Mathematica. Time used: 0.035 (sec). Leaf size: 24
ode=D[y[x],{x,2}]+y[x]==Cos[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{3} \cos (2 x)+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.044 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - cos(2*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} - \frac {\cos {\left (2 x \right )}}{3} \]