Internal
problem
ID
[24736]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
10.
Nonhomogeneous
Equations:
Operational
methods.
Exercises
at
page
151
Problem
number
:
8
Date
solved
:
Thursday, October 02, 2025 at 10:47:33 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)-12*diff(diff(y(x),x),x)+48*diff(y(x),x)-64*y(x) = 15*x^2*exp(4*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]-12*D[y[x],{x,2}]+48*D[y[x],{x,1}]-64*y[x]==15*x^2*Exp[4*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-15*x**2*exp(4*x) - 64*y(x) + 48*Derivative(y(x), x) - 12*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)