Internal
problem
ID
[24755]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
10.
Nonhomogeneous
Equations:
Operational
methods.
Exercises
at
page
151
Problem
number
:
27
Date
solved
:
Thursday, October 02, 2025 at 10:47:43 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-2*a*diff(y(x),x)+a^2*y(x) = exp(a*x)+diff(diff(f(x),x),x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*a*D[y[x],{x,1}]+a^2*y[x]== Exp[a*x]+D[f[x],{x,2}]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") f = Function("f") ode = Eq(a**2*y(x) - 2*a*Derivative(y(x), x) - exp(a*x) - Derivative(f(x), (x, 2)) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)