89.20.6 problem 6

Internal problem ID [24762]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 10. Nonhomogeneous Equations: Operational methods. Oral Exercises at page 154
Problem number : 6
Date solved : Thursday, October 02, 2025 at 10:47:47 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 y+y^{\prime \prime }&={\mathrm e}^{3 x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)+4*y(x) = exp(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (2 x \right ) c_2 +\cos \left (2 x \right ) c_1 +\frac {{\mathrm e}^{3 x}}{13} \]
Mathematica. Time used: 0.05 (sec). Leaf size: 29
ode=D[y[x],{x,2}]+4*y[x]== Exp[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{3 x}}{13}+c_1 \cos (2 x)+c_2 \sin (2 x) \end{align*}
Sympy. Time used: 0.048 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) - exp(3*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (2 x \right )} + C_{2} \cos {\left (2 x \right )} + \frac {e^{3 x}}{13} \]