89.20.9 problem 9

Internal problem ID [24765]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 10. Nonhomogeneous Equations: Operational methods. Oral Exercises at page 154
Problem number : 9
Date solved : Thursday, October 02, 2025 at 10:47:49 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{2 x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 32
ode:=diff(diff(diff(y(x),x),x),x)-4*diff(diff(y(x),x),x)+4*diff(y(x),x) = exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (2 x^{2}+\left (4 c_1 -2\right ) x -2 c_1 +4 c_2 +1\right ) {\mathrm e}^{2 x}}{8}+c_3 \]
Mathematica. Time used: 0.029 (sec). Leaf size: 40
ode=D[y[x],{x,3}]-4*D[y[x],{x,2}]+4*D[y[x],x]== Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{8} e^{2 x} \left (2 x^2+(-2+4 c_2) x+1+4 c_1-2 c_2\right )+c_3 \end{align*}
Sympy. Time used: 0.148 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(2*x) + 4*Derivative(y(x), x) - 4*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \left (C_{2} + x \left (C_{3} + \frac {x}{4}\right )\right ) e^{2 x} \]